Musculoskeletal MRI: Practical Protocols

Timothy J. Mosher, MD
Chief, Musculoskeletal Imaging and MRI
Penn State University College of Medicine
Hershey, PA

Learning Objectives

- Discuss general considerations in designing clinical MRI protocols
- Understand the role of contrast resolution in the context of imaging connective tissues
- Present clinical MRI protocols for MSK MRI at 3.0 T

What is a "Practical" MRI Protocol

- A practical protocol is not a perfect protocol
- The final product must satisfy many different customers with competing interests
- For every protocol there is a colleague with a better protocol

Organizational Guidelines

- Use detailed MRI requests and patient questionnaires to extract sufficient history
 - Mark site of tenderness/mass with fiducial marker
- · Use targeted MRI protocols
 - Primary objective
 - Secondary objective
- Limit patient examination times to 45 minutes or less
- Always perform the most important sequence first
- Invest in education for technologists

General Approach for Designing Clinical MRI Protocols

- 1. Obtain sufficient signal to noise (SNR) to get the job done
- 2. Optimize contrast for the tissue that you are evaluating
- 3. Select image plane and resolution based on the anatomy that you are evaluating
- 4. Adjust acquisition parameters to minimize artifact

Principle 1: Musculoskeletal MR imaging protocols are optimized for contrast resolution at the expense of imaging speed

Commonly used sequences for MSK MR imaging

- Conventional spin echo
- Fast (Turbo) spin echo
- · Gradient echo

Conventional Spin Echo

- Advantages
 - Excellent contrast
 - Experience
 - Validation studies
- Disadvantages
 - Long imaging times

3.0 T Proton density weighted spin echo

- Image blurring
- Magnetization transfer
- High SAR

1.5 T Turbo Spin Echo PD-weighted

Principle 2: First optimize contrast based on tissue type, then adjust resolution based on anatomy

Effect of collagen on tissue contrast

- Efficient spin-spin (T2) relaxation
 - Tissue T2 is inversely related to collagen concentration
 - Tissue T1 is less dependent on collagen concentration
 - Anisotropic arrangement of collagen fibrils produces an orientation dependence of T2 (Magic angle effect)
- Magnetization transfer
 - Collagen is the dominant macromolecular component for magnetization transfer

Sequence Selection for MSK MRI

Soft tissues

- Muscle/Fat/Bone Marrow
 - T1 FSE
 - T2 FSE with fat
 - suppression
 - STIR

Connective Tissues

- Menisci/Ligaments/ Tendons
 - T1 SE
 - T1 or PD FSE
 - PD FSE with fat suppression
- Articular Cartilage
 - PD FSE with or without fat suppression
 - Fat suppressed T1 spoiled gradient echo

Principle 3: In evaluation of connective tissue pathology tissue contrast will primarily be determined by:

Pulse Sequence Echo Time

Magic Angle Phenomenon

Tailoring the MRI protocol for evaluation of connective tissues

- Most clinical MSK MRI requests are for evaluation of connective tissue pathology
- · Primary indications
 - Shoulder: rotator cuff tear
 - Knee: meniscal tear
 - Ankle: tendon or ligament tear

MSK MRI protocol must be designed to accurately characterize connective tissue pathology, with the critical factor being identification of a surgical lesion (i.e. tear)

Effect of Connective Tissue Pathology on T2

Normal Tendon

Low concentration

of mobile protons

 $T2\sim250~\mu s$

Tendon Degeneration

Mobile proton pool, with high collagen concentration

Free Fluid $T2 \sim 100 \; ms$

Tendon Tear

 $T2\sim 20\ ms$

T2 changes with tendon pathology

Choice of TE in Evaluation of **Tendons and Ligaments**

Evaluation of the rotator cuff: Short TE Sequence

Abnormal

Abnormal

Principle 4: In evaluation of connective tissues two TE values are often needed:

Short TE: high sensitivity, low specificity

Long TE: low sensitivity, high specificity

Clinical Application of 3D T1-GRE Cartilage Imaging

1.5 T Water excited 3D T1weighted GRE

3.0 T Wrist Imaging

Fat Suppressed Proton Density TSE

Contrast versus resolution in visualization of superficial fibrillation

Fat-suppressed 3D FLASH 1mm, 512² matrix 0.1 mm³ voxel size

3D DESS 2 mm, 256² matrix 1.0 mm³ voxel size

Improved visualization of superficial cartilage lesion with FSE

Fat sat T1 -weighted GRE

Fat sat Proton Density FSE

Tissue Contrast at the Articular Surface

Fibrillated Cartilage

MT improves visualization of the articular surface of cartilage

Why are meniscal tears less conspicuous on FSE? • Magnetization Transfer decreases signal intensity of fluid within tear • Blurring due to T2 modulation of the point spread function

Tips to minimize FSE blurring

- Reduce the echo train length (< 6)
- Reduce the time interval between echoes (inter-echo spacing)
- Increase spatial resolution
- Less effect on FSE T2 weighted images than on short TE images

Summary of tissue contrast considerations Signal intensity changes in connective tissues are

- dominated by T2 effects of collagen on water
- Magnetization transfer is a critical mechanism of contrast at tissue interfaces
- Short TE is needed to detect changes in the collagen matrix (tendon degeneration) Long TE is needed to characterize free fluid (diagnose
- tendon tear)
- Rapid T2 decay results in image blurring with fast (turbo) spin echo sequences
- Fat suppression is useful to increase dynamic range

The Shoulder Protocol

- Primary indication: Rotator cuff evaluation
- · Secondary indications
 - Instability
 - Labrum
 - Capsule
 - Cartilage
 - Muscles
 - Marrow
 - Periarticular soft tissues

Optimizing TE: The Shoulder MRI Protocol

Sequence	TR (ms)	TE(eff) (ms)	ST (mm)	Matrix	FOV (cm)	
Axial FSE PD with FS (ET 6)	4000	30	3	512 x 512	18	
Coronal Oblique FSE T1 (ET 3)	500	15	4	512 x 512	18	
Coronal Oblique FSE T2 (ET 12)	4000	60	4	512 x 512	18	
Sagittal Oblique FSE PD	4000	100	4	512 x 512	18	

3.0 T Protocol

43 year old male with abduction weakness

The Knee Protocol

- Primary indication: detection and characterization of meniscal tear
- · Secondary indications
 - Ligamentous injury
 - Osteochondral pathology
 - Soft tissue inflammation

3.0T Knee MRI Protocol

Sequence	TR (ms)	TE(eff) (ms)	ST (mm)	Matrix	FOV (cm)
Fat Sat Axial FSE PD with DE (ET 5)	4200	30	3	512 x 512	16
Sagittal FSE PD (ET 5)	2500	15	4	512 x 512	16
Fat Sat Sagittal FSE T2 (ET 6)	5500	45	4	512 x 512	16
Fat Sat Coronal FSE PD (ET 5)	4200	30	4	512 x 512	18

3.0 T Protocol

23 year old with post-traumatic ACL insufficiency

The Hip Protocol

- Primary indication: pain unresponsive to conservative management
 - AVN
 - Labral tear
 - Acetabular femoral impingement
 - Greater trochanteric bursitis

Problem: Need for large region of coverage with high spatial resolution

29 year old professional hockey player with chronic groin pain

3.0T Hip MRI Protocol

Sequence	TR (ms)	TE(eff) (ms)	ST (mm)	Matrix	FOV (cm)
Coronal FSE T1 (ET 3)	800	12	5	512 x 512	34
Coronal FSE T2 with FS (ET 16)	5500	80	5	1024 x 1024 SENSE factor 2	34
Coronal axial and sagital PD (ET 5)	2000	30	3	512 x 512	16
Coronal PD with fat sat (ETL: 9)	2200	40	3	512 x 512	16

Phased array body coil both hips

Paired surface coil symptomatic hip

55 year-old female with left hip and buttock pain with exercise, suspect pyriformis syndrome

1.5 T Coronal SSET2phassedarray

3.0 T Coronal FSE T2

3.0 T Hip MRI

Coronal PD

Coronal PD with fat suppression

24 year old female soccer player with chronic hip pain

Take Home Points

- Trade-off of contrast, resolution, and speed
- MSK protocols optimized for contrast resolution
- Optimize contrast first then adjust anatomy
 - Contrast is tailored for the tissue type
 Resolution is tailored for the anatomy
- Connective tissue contrast is strongly influenced by Confidence assure contract to strongly and collagen
 Short T2
 Magnetization transfer
 Orientation dependence of signal intensity
- Dynamic range is set by fat, use of fat suppression allows shorter TE's to be used to obtain fluid sensitive sequences

